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Abstract 

For the &z gluon scattering procew WC give explicit and aimple expressions for 

the amplitude and its square. To achieve t&e we uee an analogy with atring theories 

to identify a unique procedure for writing the multi-gluon scattering amplitudea in 

terma of a sum of gauge invariant dual s&-amplitudes multiplied by an appropriate 

color (Ghan-Paton) factor. The s&amplitudes defined in this way are invariant 

under cyclic permutations, satisfy powerful identitiee which relate different noa- 

cyclic permutations and factorixe in the soft gluon limit, the two gluon collinear 

lit and on multi&on poke. Also, to leading order in the number of wIore these 

s&amplitudes sum Incohcrcntlg in the square of the full matrix element. The 

resulta contained here are important for MontbCarlo studied of multi-jet proceeeee 

at he&or. collidera u well IY for onderataading the general structure of QCD. 
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1 Introduction 

The calculation of multi-gluon scattering processes in QCD is extremely complicated 

owing to the cancellations that occur because of the gauge inmiance of the theory. In 

thii paper we present simple and explicit analytical results for the siz gluon scattering 

amplitude in the helicity representation and its square summed over the colors and 

helicities of the gluons. This is achieved by using an analogue with string theories 

to identify gauge invariant, dual sub-amplitudes for multi-gluon proceases. The sub- 

amplitudes are obtained by rewriting the color factors of the Feynmau diagrams in 

terms of traces of color matrices in the fundamental representation of the gauge group. 

To evaluate the sub-amplitudes the polarization vectors for the gluons are written in 

terme of Weyl spinom and the calcuius of spinor products is employed. The dual 

sub-amplitudes so de&led and calculated have many remarkable properties that are 

generally expected only of the full amplitude. The most important property being the 

factorization of the sub-amplitudes in the soft gluon lit, in the two gluon collinear 

lit and on the three gluon poles. The simple form of the sub-amplitudes and their 

many surprising and beautiful properties suggests that there is a hidden simplicity in 

QCD which is yet to be discovered. Also, the resulta obtained in this paper are the 6rst 

time the explicit matrix element squared has been derived for auy six parton scattering 

process in QCD. 

Theae e&-amplitudes and their squares are also useful for Monte Carlo studies of 

multi-jet physics. The present (Cem SppS and Fermilab Tevatron) and future hadron 

colliders (SSC or LHC) have or will have many multi-jet events. These events hold 

great promise for quantitative teats of Quantum Chromodynamics (QCD) as well as 

being significant backgrounds to many other processes of inter& in the standard model 

and to the discovery of new physics (11. Up to now only the two and three jet 5ai 
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Pl,Pa... pm and helicities ci, cr . . . c,,, can be written as 

M, = (2.1) 

where the sum, perm’, is over all (n - l)! non-cyclic permutations of 1,2,. . . , n and 

the X’s are the matricen of the symmetry group in the fundamental representation. 

The proof of thii statement is very aimple using the identities [X”,X’] = ifhXe and 

tr(.vP) = f6” . In any tree level Feynman diagram, replace the color structure 

function at some vertex using fh = -2i tr(X’XbXc - X”X’X’). Now each leg attached 

to this vertex has a X matrix associated with it. At the other end of each of these legs 

there is either another vertex or this ls MI external leg. If there is another vertex, use 

the X associated with this internal leg to write the structure function of thii vertex 

fib X” se -i [Xd,Xg]. Continue tbii processes until all vertices have been treated in 

this manner. Then this Feynman diagram has been placed in the form of eqn(2.1). 

Repeating this procedure for all Feynman diagrams for a given process completes the 

proof. 

The sub-amplitudes m(l,2,. . . ,n) 3 m(pl, cl;n, g;. . .p,,, en) of eqn(2.1) satisfy 

a number of important properties and relationships. 

(1) 4,%..., n) is gauge invariant. 

(2) +,2,..., n) is invariant under cyclic permutations of 1,2,. . . , n 

(3) m(n,n-l,...) 1) = (-l)“m(l,2 ,..., n) 

(4) The Ward Identity: 

m(l,2,3 ,..., n) + m(2,1,3 ,..., n) + m(2,3,1,...,n) (2.2) 

+ -a- + m(2,3 ,..., 1,n) = 0 
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of these dual sub-amplitudes will assume a particularly simple form. 

The gauge invariance and properties under cyclic and reverse permutations allows 

the calculation of far fewer than the (n - I)! sub-amplitudes that appear in the dual 

expansion. In fact the number of sub-amplitudes that are needed is just the number of 

different orderings of positive and negative helicitiee around a circle. Of course some 

of the sub-amplitudes vanish because of the partial helicity conservation of tree level 

Yang-Mills and others bte simply related to one another through the properties (2) 

through (4). 

2 3 

xc- 
.‘-.a 

1 4 

,x3+ lx2 
1 4 4 3 

Figure 1: The zero-slope lit of the four gluon string diagram in terms of Feynman 

diagrams (tri-gluon couplings only). 

3 Evaluation of the Sub-Amplitudes 

We use the helicitp baei for the polarization vectom which wae introduced by Xu, 

Zhang and Chang(g] which is an important improvement over the CALKUL technique 

[Q]. Thii is achieved by introducing masslean spinore, Ipf), which have momentum p 

and helicity ~9. The adjoint of this spinor is (prl. The spinor products are the scalar 

quantities obtained by multiplying (p- ( with (q-k-) or @+ ( with (q-). 



(1) k. c&q) = 0, 

c*(k,q) . c;(k,q) = 0 and e*(k,q) . $(k,q) = -1. 

(2) @(kd) = @‘(kq) + P(k,d,q) kr. 

(3) q. c*(k, 4) = 0. 

(4) %(kl,q) .ci(kz,q) = 0. 

(5) &l,h) .+(kz,q) = 0. 

The properties in (1) are the standard properties of polarization vectors. Whereas 

(2) together with the gauge invarianceof the sub-amplitudes, i.e. m(l,2,. ~1, n) I,;=+ = 0, 

impliee that p in irrelevant and hence we cb~l choose different reference momenta for 

each of the gluons and digerent reference momenta for a given gluon in different eub- 

amplitudes. Property (3) eliminates many t- ifthe reference momenta are choeen to 

be other light-lie momentum vectors in the calculation. Where-, (4) and (5) suggest 

that for a given sub-amplitude calculation all gluone with the same helicity should have 

the came reference momentum and that thii reference momentum should be the mo- 

mentum of a gluon with opposite helicity. Of comae for a given sub-amplitude it is as 

art to choosing the reference momenta of the gluone 80 aa to miniie the complexity 

of the resulting expression, but in general minimizing the number of nonzero ci. cj’s ia 

the most useful choice. 

4 Four and Five Gluon Scattering 

h the rest of this paper we will use the shorthand notation for the spinor producb, 

(ii) = (pi - (pj+) and [;j] = (pr + (pi-) ; then ueing the techniquea of the la& section 

it ie easy to derive the following results. For the four gluon proce~, expand the color 



In squaring the four gluon amplitude and s umming over colon the O(N-l) terms 

in eqn(2.3) can be shown to vanish by ueing only the general properties, especially the 

Ward Identity, of the sub-amplitudes. Therefore, 

c lM41Z = 
edw. 

N*(;;- l1 c 1”(1,2,3,4)(*, 
P-’ 

and the square of each sub-amplitude is very simple because the spinor product is the 

square root of twice the dot product. The final result is the standard four gluon matrix 

element squared. 

g.,c,, IM# = N’(N’- 1) 9’ l &ls,s34s,,’ (4.3) 

Here we have not averaged over incoming helicitiea or colors. 

For 5ve gluon scattering only thoee Feynman diagramn, or part there of, with color 

structure the name M the diagrame of Fig. 2 contribute to the m(l,2,3,4,5) sub 

amplitude. Thii ia easily seen by rewriting the color factora for the Feynman diagrams 

a8 

jdx jxer jrd8 = 2i tr([x’,x’][x”,[X’,X’]]). 

Again, it is a straight forward, simple calculation [4] to show that the only nonzero 

sub-amplitude have either two or three negative helicity gluona and that the three 

positive - two negative hellcity 8ub-amplitude is given by 

mr+,-(1,2,3,4,5) = 4&g’ WY 
(l%=)(~)W@l) * 

Where I and J are again the momenta of the negative helicity gluom and the denomi- 

nator ordering is determined by the order of the momenta in the sub-amplitude. The 

two poeitive - three negative helicity amplitude is obtained fkom this last equation by 

10 



jdXjcdYfa~2jXYa = 2 tr([X”,X’]~Xe,Xd][X’,Xa]) - 2 tr((X’,Xf][X”,Xd]IX’,Xb]). 

Then, by using the appropriate reference momenta for the polarization vectors it ia 

easy to see that the only non-zero sub-amplitudea are those with four poeitive - two 

negative, two positive - four negative and three poeitive - three negative helicities. 

After a lengthy calculation we have obtained the following expreesiona for the aix gluon 

sub-amplitudes. 

;fi4 .,-o p-y+ )+:+ j;15 
6 5 1 6 

+ cyclic perma 

Figure 3: The zero-slope lit of the six gluon atring diagram in terms of Feynman 

diagrams (tri-gluon couplings only). 

The sub-amplituded for the four positive - two negative helicity processes are a 

straight forward generalization of the four and five-gluon su&unplitudea; 

m4+2-(1,2,%4.5,6) = 8ig4(12)(23)(~~)~~)(5(1)(61). 

Again, I and J repreeent the momenta of the negative helicity gluona. Different permu- 

tations can be obtained M before by keeping &ed the numerator and permuting the 

momenta in the denominator. The two positive - four negative helicity 8ubamplitude 

in obtained from eqn(5.1) by complex conjugation. 

The three positive - three negative helicity sub-amplitudee are not an simple, but 

lie the two positive - two negative helicity sub-amplitudea they can be written down 
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and hence the Altarelli-Parisi (131 behaviour of the squared amplitude when two gluona 

become collinecu, is 

m3+3-(1,2,3,4,5,6) = t,2,~f~t,, 

(12,(2$45,[56] + (23)(3;[56,[61] + (34)(4;61,[12) 

+ (45)(5;[12,[23] + {56)(6;23,[34] + @1){12;34][45] I ’ (5.4) 

where the coefficients 01 through CQ axe given in Table II. In thii representation the 

two particle propagators always appear aa a spinor product, i.e. M a square root of 

the propagator, therefore the square of this 8ukxunplitude only diverges lie a single 

power of the propagator when two gluons become collinear. Thii is the Altarelli- 

Pariai behaviour for the 8ub-amplitudea. Further properties of these amplitudea will 

be. diicuseed in the next section. 

The six gluon sub-amplitudea satisfy the three distinct Ward Identitien obtained 

from the following equation 

m(l,2,3,4,5,6) + m(2,1,3,4,5,6) + m(2,3,1,4,5,6) 

+m(2,3,4,1,5,6) + m(2,3,4,5,1,6) = 0 (5.5) 

using the helicity ordering of the firat term m either m(l+, 2+, 3+, 4+, 5-, 6-), 

m(1+,2+,3+,4-,5-,6-) or m(1+,2-,3+,4-,5+,6-). These three Identities are 

extremely pow& and relate sub-amplitudes with different orderinga of the hekitiea. 
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the numerator as 

((n - 1) 2)(n 1) = ((n - 1) l)(n 2) + ((n - 1) n)(l 2). 

The two terms thus generated are exactly the extra terms needed for the n-gluon Ward 

Identity for this helicity structure. This provides further evidence that this is indeed the 

sub-amplitude for the (n - 2) positive - two negative helicity gluon scattering process. 

6 Factorization Properties of the Sub-Amplitudes 

The most important and remarkable properG= of the Yang-Mills dual 8ub-amplitudes 

are their factorization properties, whoee origin can be traced back to the string picture. 

In this section we show that the 8ub-amplitudes diicussed in this paper factorize in 

(1) the soft gluon limit, 

(2) when two gluona become collinear and 

(3) when three gluons add to form an on mass-ahell gluon 

i.e. on the three gluon pole. 

For arbitrary n-gluon scattering these factorization propertiea of the auhamplitudea 

will extend up to factorization on the [n/2]-gluon polea. 

First, we consider the soft gluon limit. Consider the sub-amplitudea when gluon 1 

hsa an energy which is small compared to all the other energies in the process. Then 

the 5ve and six gluon sub-amplitudes calculated here, satisfy 

m(l+,2.. . ,n) ‘+a’ {~$I;~~) m(W...,n) 

m(l-,2...,n) ‘-3’ (~~lf~~~} m(2,3...,n). 

(‘3.3) 



m(1+,2-,3,. ..) ‘+a- {w) 2 rn(P+,3,...) 

igfi (1 - 2)’ 1121 . 

&=J I 
2 m(P-,3,...) 

m(l-,2-, 3,. . .) I-&- m(P-,3,...). 

(6.6) 

(6.7) 

Note that either (12) or [12] appears in the numerator of each term. Also, it is useful 

to interpret the factor in braces as the @three gluon sub-amplitude” in the lit when 

two gluons become collinear. This three gluon sub-amplitude has the square root 

suppression of the pole MI well as having the square root of the appropriate Altarelli- 

Parisi gluon-fusion function. From this result and the incoherence of the sub-amplitudes 

in the square of the matrix element the standard results of Altarelli and Parisi are 

obtained in a simple manner. 

The sub-amplitudes also factorize in the three particle channel; here let P = 1+2+3, 

then as Pa + 0 it is easy to see that 

m&2,3,4,5,6) + ; +,2,3,-P) 2 m(P,4,6,6) (‘3.8) 

for the helicity structure three positive and three negative. Since helicity is conserved 

in the four gluon process, the helicity of the intermediate gluon is determined for this 

helicity structure and the four positive - two negative helicity sub-amplitude has no 

three particle poled. 

Of coume the full matrix element must also factorize. This is trivial in Feynman 

diagram language but here it is not so obvious because of the way we have added 

diagrams together. The color factors almost factorizes for an SU(N) gauge group, 

tr (ALAa . , . A”) = 2 C tr (A’. . . XmXs)tr(A’Xm+l.. . An) 
z PJ.9) 
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Thus, the complete matrix element squared, summed over helicities and colors, is given 

pI, IJG = N”;;- l)[pz,g @(1,2,3,4,5,6) 

+~~-{~~1(1,2,3,4,5,6) +&(1,-L&4,5,6) 

+ +(LW,V) ?] (7.3) 

where the subscripts on the functions, E, determine the helicity structure of the squared 

sub-amplitudes. @ is the four positive - two negative (gluons I and J) helicity atruc- 

ture, Hi is the alternating helicity structure (1+2-3+4-5+6-), Hs is the mixed helicity 

structure (1+2+3-4+5-6-) and Hr is the adjacent structure (1+2+3+4-5-6-). Theee H 

functions can be calculated either numerically from the sub-amplitudes, eqns(5.1, 5.2), 

or for the leading color terms from the analytic form of the square of the sub-amplitudes 

given below. 

To calculate the squares of the sub-amplitudes many properties of the spinor prod- 

ucts developed by Xu et al[S] were used. In fact very compact expression in terms of the 

Lorentz invarianta, &, were obtained for two out of the four sub-amplitudes squared. 

The other two sub-amplitude structures are not as compact but consist of lees than two 

hundred terms when expressed purely in terms of the elementary kinematical invariants 

Sij and tijka Here, we give the two pimple squares (the others are in the Appedii). 

First, the four positive - two negative helieity sub-amplitude squsred is 

Imr+t-(l,2,3,4,5,6)I* = 64 gss~,s~s~~,,s,sel (7.4) 

where I and J are the negative helicity gluons. Of course the two positive - four negative 

helicity sub-amplitudes are given by the same expreesion with I and J now being the 
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The smallness of the non-leading color terms and the fact that the leadiig color terms 

are just the squares of the simple sub-amplitudes implies that the square of thii matrix 

element is easy to obtain. 

The double poles of Sa and Ssr in jm(lc,2+,3+,4-,5-,6-)11, eqn(7.5), are only 

apparent. Thii can be seen by using the identity 

tr(i%i66) = t1z3t134t~s - tLdh%l - h4~46&2 - f346kiz3, 

here i = pi. 7, and realizing that for adjacent momenta this trace goes to zero as the 

square root of the Lorentz invariant, S<j , as thi invariant goes to zero. The Altarelli 

- Parisi relationship can be obtained from this squared 6ub-amp&de by using 

/ 
2 t?(iiSiSd) -) 2 ~1z~2,~34~4&&1 

es any two momenta that are adjacent in the trace become parallel and the integral is 

the standard azimuthal averaging for these two momenta. 

8 Conclusion 

Hare we have presented an extremely powerful technique for evaluating multi-gluon 

scattering processes by using an analogue with string theories to identify gauge invariant 

sub-amplitudes. Not only rue these sub-amplitudes straight forward to calculate but 

they are simple and satisfy many important properties. The mcmt remarkable properties 

are their factorization in the soft gluon lit, the two gluon collinear lit and on 

multi-particle poles. This suggests that there is a hidden simplicity in QCD yet to 

be discovered. We have demonstrated the power of these techniiues and simplicity of 

the results by preeenting the amplitude and ite square for the four, flve and six gluon 
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for more than five external particles .YO the sub-amplitudes were evaluated using 

Feynman perturbation theory. 
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r’r : (123456) ---) (654321). 

r, is a symmetry of all of the three matrix elements squared, while x* ate symmetries 

of Im(+ - + - +-)I2 only. Whenever either of the r’s appears as an entry in Table A, 

this entry has to be filled in such a way M to enforce these symmetries. For example, 

the term proportionsl to T<’ in Im(+ - + - +-)I’ is given by S&S&(1242}*, and in 

]m(+ + + - --)I’ Is given by S&S&(3X6X}‘. 

Finally, the symbol ~.e. after a product of tracee is the chirai conjugate and its 

meaning IB clear from the following example: 

{356Y4Y}{124Y3Y} + xx. = {356Y4Y}{l24YSY} + {366Y4Y~r}{l24Y3Y7,}. 

To express the amplitude squared in terms of the elementary kiematical invariants 

Sij and tQk, it is necessary to expand the traces appearing in the Table. Below we 

give the set of identities that we have used to carry out this expansion which generates 

eqn(7.5) for (m(l+,2+,3+,4-,5-,6-)/l and fewer than two hundred terms for the 

other subamplitudes squared. 

As an immediate consequence of (9.1) and (9.2) 

t3 (iiis.+.im) - tr*(ili,.+ei,m71) = 4 st,i,sc,i,...sg,i,. (9.3) 

A straight forward generalization of this identity is 

tr (iliz. *. ia,70) tr (jrl; *a .j&7s) = tr (iLiz *. . is,) tr (jrjr * + *j&J (9.4) 

- 2[(il it](iz is) *.* (&&)(jl j2)(3;j3]*.. [I;m jl] + e.c.1. 

These two identities reduce all of the traces containing a 7s and thus one can show that 

{462135’ys}{6423157s} = {462135}{642315} 
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